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A computer-simulation model is used to study the percolation phase transition of stift
chains/sticks on a square lattice. By varving the chain length, effects of the chain fength (L)
on the percolation transition is explored. The percolation exponents scem to remain
unchanged with L_. The pereolation threshold po depends strongly on the chain-length. and
shows a power-law dependence p (L)~ 1L '

1. Introduction

Because of its diverse applicabilities particularly in fluid flow through porous
media (i.c. marine sediments). percelation phenomena have been the subject
of active research for a long time [1. 2}. Site and bond percolations are mostly
studicd. and have been quite successtul in understanding the physical and
chemical properties ot inhomogeneous materials (alloys in particular). In most
of the polymeric materials i.c. the gel networks. the basic units/segments that
form the incipient infinite network. are chains and loops of various sizes [3]. In
order to understand the strength of connectivity at the onset of the infinite
network. it would be interesting to study a model of percolating networks with
chains and loops of various sizes as basic units. Site and bond percolation
mechanisms may not be adequate to describe the conformational properties of
such random networks. On the other hand. it is rather difficult to consider both
loops and chains of various sizes and distributions. because of limitations on
computer memory and time. Therefore. it might be useful to investigate the
percolation of chains.

Drory et al_{4] have recently studied the percolation threshold of permeable
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objects ot various shapes in continuum space. Thev found that the percolation
threshold depends strongly on the size and shapes (i.e. aspect rato tor
clongated boxes. radius for spheres. cte). Here we have investizated the
percolation of stiff-chains (sticks or thin rods) of various sizes in o two-
dimensional discrete lattice: we also find a strong dependence of the pereola-
tion threshold on the chain length. Such studies mayv be helpful in short tibres
cpoxy resin composites [3]. A related studv on jamming coverage has been
recently carricd out by Svrakic and Henkel {6] for an irreversible deposition of
mixtures of linc-segments on a square lattice. We have also observed the
Jamming coverage to decercase with the chain-length. however. we concentrate
here primarily on percolation  quantities for monodisperse chains. In the
following scction we describe the model. In section three the results of the
simulation are presented with a summary and discussion in section four.

2. Model

We consider a square lattice. and sticks (i.c. stiff-chains) as the percolating
units. In classical percolation theory one studies the statistics of a single
percolating site. We wish to study the statistics of percolating chains where a
chain is defined as multiple percolating sites connected in a lincar fashion. Thus
the Iength of a chain L is the number of lincarly connected sites on the lattice:
L. =1 corresponds to standard site percolation. For a fixed chain-length L. we
generate clusters of connected chains in the following wav. The decision to
place a chain is determined with a probability p with the help of pscudo-
random numbers. [f the rtandom number is less than or cqual to p. then we
randomly sclect one of the four directional orientations. The chain is then
placed along the chosen direction if no occupicd lattice site is in the way as two
chains are not allowed to share a lattice site. If the randomlv sclected
orientational dircction fails. then we choose another empty site randomiy. and
a random orientational direction. Therefore. a chain is not placed if it were to
intersect with a previously occupied lattice site. This process of selecting an
cnpty site with probability p. and one of the orientational directions randomlv.
and attempt to place the chain is repeated again and again. for a fixed
concentration of occupied sites. The consequence ot this rule is that a jamming
concentration limit p, is reached when it is not possible to place additional
chains in the lattice. The jamming coverage is less than one for [, larger than
one. We concentrate here mainly on the percolation quantitics. and focus on
the cluster size. their number. percolation probability and the second moment
of the cluster size distribution. In this study. a cluster is defined by joining the
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nearest-neighbor occupied sites. thus two neighboring sticks will be part of the
same cluster if they are separated by one lattice constant.

3. Results

Simulations are carried out on CONVEX CI1XP2 machine with 32MB of
memory. This computer contains a vector processor. vet we were unable to
make maximum use duc to the lack of vector code in the algorithm. For cach
probability p. two hundred independent runs are used on a 1000 > 1000 lattice
with various size chains. A typical computation requires two hours of process-
ing time tor cach sct of realizations. Twentv-cight ditferent values of p were
used for seven different chain-lengths. About 400 hours of computer time was
used in this project.

As we mentioned above. we have analysed percolation probabiiity P2,
cluster number. and the sccond moment $=(s™) of the cluster size dis-
tribution. The percolation threshold was determined by finding the peak in the
sccond moment. The result of the percolation threshold versus chain-length s
shown in fig. 1. We sce that the pereolation threshold decreases on increasing
the chain-length. When shown on a log—log plot this decay exhibits a exponent
power-law dependence i.e. p (L)~ L. ". This exponent x was found using a
least-squares technique to be about one halt.

The cxponent beta is determined by examining the percolation probability
data with P, ~(p — p.)*. Fig. 2 shows this percolation probability i.c. prob-
ability that a site is a member of the infinite cluster versus the probability that a
site is occupied for various chain-lengths. Again. it can be scen that the
percolation threshold decreases with increasing chain-length. It should also be
noted that the percolation probability saturates at a value of p less than one.
The saturation value of P, is the jamming coverage [6]. and it decreases with
increasing chain-length as expected.

From the lcast-square fit of the log—-log plot of P, versus (p —p.) we
estimate 3. We have evaluated B for various chain-lengths and the results are
presented in table 1. Within the range of the deviations. these values for 8
seem to remain the same for different chain-lengths. and is consistent with the
accepted values for site and bond percolation [1].

Variation of the second moment S (i.e. the susceptibility) with concentration
p is shown in fig. 3 for various chain-lengths. The concentration where $
reaches its maximum value is the percolation threshold. Again. it is clear from
the data that the percolation threshold decreases with increasing chain-length.
A log-log plot of § versus (p — p.) gives the exponent y, S~(p —p.) . The
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Fig. 1. Percolation threshold p versus chain-length (a) lincar scale. and (b) log~log scale.

values of y for various chain-lengths are presented in table 1 which appears to
show no change with chain length (+ and — denote the estimates at p above

and below p_, respectively).

Using the scaling relations (1], other exponents like the correlation length
exponent v can ve estimated. The fractal dimensionality D may also be
evaluated from D =d — B/v. The computed values for v and D for various
chain-lengths are collected in table 1 for various chain-lengths.
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Table |

L. P s Vi) (=) - D
! 11,393 0.139 212 207 1.20 L8N
2 044N 0.t37 223 [.83 .25 a3
3 1.360 0140 .27 [.63 .28 1Yl
4 0.321] 0,134 237 143 1.32 .00
3 1.293 0143 2534 L.o0 .31 1.vl
10 1.233 0139 240 2.4 .34 o0

20 0.132 (13N 241 240 .34 .o

4. Summary

We have presented a computer-simulation study of the percolation ot sttt
chains/sticks in a two-dimensional lattice. The percolation exponents scem to
remain unchanged. The percolation threshold. on the other hand. depends
strongly on the chain-length L, with a power-law p,~ L' °. The jamming
coverage decreases with the chain-length. We plan to study the percolation of
random chains in the near future.
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